Characterization of postoperative changes in nasal airflow using a cadaveric computational fluid dynamics model: supporting the internal nasal valve.

نویسندگان

  • Scott Shadfar
  • William W Shockley
  • Gita M Fleischman
  • Anand R Dugar
  • Kibwei A McKinney
  • Dennis O Frank-Ito
  • Julia S Kimbell
چکیده

IMPORTANCE Collapse or compromise of the internal nasal valve (INV) results in symptomatic nasal obstruction; thus, various surgical maneuvers are designed to support the INV. OBJECTIVE To determine the effect on nasal airflow after various surgical techniques focused at the level of the INV and lateral nasal sidewall. DESIGN AND SETTING A fresh cadaver head was obtained and underwent suture and cartilage graft techniques directed at the level of the INV using an external approach. Preoperative and postoperative digital nasal models were created from the high-resolution, fine-cut, computed tomographic imaging after each intervention. Isolating the interventions to the level of the INV, we used computational fluid dynamic techniques to calculate nasal resistance, nasal airflow, and nasal airflow partitioning for each intervention. INTERVENTION Suture and cartilage graft techniques. MAIN OUTCOMES AND MEASURES Nasal airflow, nasal resistance, and partitioning of airflow. RESULTS Using the soft-tissue elevation model as baseline, computational fluid dynamic analysis predicted that most of the suture and cartilage graft techniques directed toward the nasal valve improved nasal airflow and partitioning while reducing nasal resistance. Specifically, medial and modified flare suture techniques alone improved nasal airflow by 16.9% and 15.1%, respectively. The combination of spreader grafts and modified flare suture improved nasal airflow by 13.2%, whereas spreader grafts alone only improved airflow by 5.9%. The largest improvements in bilateral nasal resistance were achieved using the medial and modified flare sutures, outperforming the combination of spreader grafts and modified flare suture. CONCLUSIONS AND RELEVANCE Techniques directed at supporting the INV have tremendous value in the treatment of nasal obstruction. The use of flare sutures alone can address dynamic valve collapse or upper lateral cartilage incompetence without gross disruption of the nasal architecture. Using computational fluid dynamic techniques, this study suggests that flare sutures alone may improve flow and reduce resistance when placed medially, surpassing spreader grafts alone or in combination with flare sutures. The longevity of these maneuvers can only be assessed in the clinical setting. Studies in additional specimens and clinical correlation in human subjects deserve further attention and investigation. LEVEL OF EVIDENCE NA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis

We used a computational fluid dynamics (CFD) model to study the inspiratory airflow profiles of patients with anterior nasal cavity stenosis who underwent curative surgery, by comparing pre- and postoperative airflow characteristics. Twenty patients with severe anterior nasal cavity stenosis, including one case of bilateral stenosis, underwent computed tomography (CT) scans for CFD modelling. T...

متن کامل

Aerodynamic effects of inferior turbinate reduction: computational fluid dynamics simulation.

OBJECTIVE To investigate the aerodynamic consequences of conservative unilateral inferior turbinate reduction using computational fluid dynamics methods to accomplish detailed nasal airflow simulations. DESIGN A high-resolution, finite-element mesh of the nasal airway was constructed from magnetic resonance imaging data of a healthy man. Steady-state, inspiratory airflow simulations were cond...

متن کامل

Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection.

Controversies exist regarding the resection or preservation of the middle turbinate (MT) during functional endoscopic sinus surgery. Any MT resection will perturb nasal airflow and may affect the mucociliary dynamics of the osteomeatal complex. Neither rhinometry nor computed tomography (CT) can adequately quantify nasal airflow pattern changes following surgery. This study explores the feasibi...

متن کامل

A Comparison of Over-the-Counter Mechanical Nasal Dilators: A Systematic Review.

IMPORTANCE The internal nasal valve is the narrowest part of the nasal airway and a common site of inspiratory collapse and obstruction of nasal airflow. Over-the-counter mechanical nasal dilators are an alternative to surgical intervention that attempts to improve airflow through the internal nasal valve. OBJECTIVE To determine the efficacy of over-the-counter mechanical nasal dilators and c...

متن کامل

Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages.

Many studies suggest limited effectiveness of spray devices for nasal drug delivery due primarily to high deposition and clearance at the front of the nose. Here, nasal spray behavior was studied using experimental measurements and a computational fluid dynamics model of the human nasal passages constructed from magnetic resonance imaging scans of a healthy adult male. Eighteen commercially ava...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JAMA facial plastic surgery

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 2014